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The Nervous System

(A) Central

nervous system -

Cranial nerves

Spinal cord Spinal nerves
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(analysis and integration of
sensory and motor information)

v \ 4

and enteric Motor nerves

Smooth muscles,
and glands

cardiac muscles, Skele:lm(sh'lateddu )

v

wWa)sAs snoAIdU
[enjua)

A

wa)sAs snoArau
[exayduag




Neuron activity state Neuronal -
—— wue | Engrams can be studied at the
9
-
g  Rettom__ wies F€EION, Nneural population, cell
o
1 or even nucleus level...
8 & Nermons c Cn
‘E \\ —::;
s o ool
: V. i
" = X »
E | 3 .
1 e
8 ‘ %
Consolidation Reconsolidation o J 1 /)
Time ® IR
Figure 1| The lifetime of an engram. The formation of an engram (encoding) involves strengthening of connections iy o ™
between collections of neurons (neuronal ensemble) that are active (red) during an event, Consolidation further j
strengthens the connections between these neurons, which increases the likelihood that the same activity pattern can be t
recreated at a later time, allowing for successful memory retrieval. During consolidation, the engram enters a mainly M ‘ ,/l
dormant state. Memory retrieval returns the engram back to an active state and transiently destabilizes this pattern of 3
connections, The engram may be restabilized through a process of reconsolidation and re-enter a more dormant state. - =
Therefore, an engram may exist in a dormant state between the active processes of encoding and retrieval required to ST
form and recover the memory. In this way, an engram is not yet amemory, but provides the necessary conditions for a
memory to emerge. [o o Ot o [= Tepaend]
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Finding the engram

Sheena A. Josselyn'-“, Stefan Kohler>*® and Paul W. Frankland'* https;//core'ac'uk/down|oad/pdf/289079817.pdf
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Criteria for identifying correlation, necessity
& sufficiency of memory

Learning => Neural Activity Correlation

(Eichenbaum, 2016)
(Hasselmo et al. 2002)
(Reijmers et al. 2007)

Observe

(Tang et al. 1999)
(Han et al, 2009)
O (Denny et al. 2014)
(Tanaka et al. 2014)

Activate neurons => Activate memory Sufficiency

Slide courtesy of Prof. Steve Ramirez (BU) (Martin and Morris, 2000)

(Liu et al. 2012)
(Ramirez et al. 2013)
(Josselyn et al. 2015)

(Tonegawa et al. 2015)




Activity-dependent and inducible

ChR2 makes cells - c-Fos is only expressed in active neurons : Dox can open and close windows for
responsive to light : :  expressing a given gene

Slide courtesy of Prof. Steve Ramirez (BU)



Using c-fos-tTA mice & ChR2 during fear conditioning

Cc
Doxycycline  No doxycycline Doxycycline
Context A Context B Context A
Habituation FC Testing
) 5 days T2 days i day" 5 days i
=]

& &V

What behavioral
readout are we
going to look for?

Mice were habituated in context A Then taken off Dox for 2 days Mice were put back on Dox and
with light stimulation while on Dox and fear conditioned (FC) in tested for 5 days in context A with
for 5 days context B light stimulation

Cartoons by Prof. Steve Ramirez (BU)



Ramirez et al. 2013, Round-Up:

“In particular, a hypothesis of great interest is whether artificially activating a previously
formed contextual memory engram while simultaneously delivering foot shocks can result in
the creation of a false fear memory for the context in which foot shocks were never
delivered.”

e They established a paradigm to genetically tag active neurons with optogenetics

e They show that DG (in comparison to CA1) holds memories and they can indeed
implant a false memory.

e The optogenetic stimulation drives activity in neurons (remarkably robust!)

e They do this during fear-learning, a powerful innate response in animals

e They additionally show that in a decision-making task the mice can act on their false
memory



Reward &
Reinforcement
Learning




Summary

Marr’s 3 levels provide a computational formulation for studying computations in the brain
Decision-making is hard: the “credit assignment problem”, delayed rewards, uncertain outcomes
Perceptual and value-based decision-making can help refine how to study and where in the brain to
study

o Reminder for the neuro-anatomy that supports visually guided decisions

o Encoding & decoding is critical
Decision variables (DV), evidence accumulation, and how to use decoding to closed-loop test how DV
are related to actions — Change of mind in decisions — how did they test this?
Operant and classical conditioning
PSTH
Dopamine (DA) neurons in VTA
RPEs
RL & TD learning
How to formalize finding computations: mapping TD to DA
Inputs to DA neurons show distributed information and even (possibly) partially computed RPEs
Distributional RL in the DA population better fits the data



Rewards (punishment) and decision making

* Perceptual & Value-based
Decision Making

* Operant Conditioning @
* Classical Conditioning || II

10



Perceptual decision making

“\ 7~ = ,/'
Sensory Decision J
input
9

—

process

|

Random dot motion task
* |t takes up to 1-2 seconds to decide

* Decisions unfold gradually by accumulating noisy evidence.

11



Operant Conditioning (also called trial-and-error learning)

operant conditioning can be considered as
the formation of a predictive relationship

© ANIMAL INTELLIGENCE

EXPERIMENTAL STUDIES between an action and an outcome
* *classical conditioning is the formation of a

predictive relationship between two stimuli
(the CS and the US)

EDWARD L. THORNDIKE
TEACHIRS COLLEGE, COLUMBIA UNIVERSITY

Edward Thorndike
(Wikipedia, 1912)

st brmesffareh o gmcas f PR e s nakintallizanNNthiar/nasa 907
https://archive.org/details/animalintelligen00thor/page/20/mode

27



Pavlov’s classical
conditioning

Before During After
Conditioning Conditioning Conditioning

(¥

Ten of the more photogenic of Pavlov's dogs. Krasavietz (upper left), Beck, Milkah, Ikar, Joy, Tungus, Arleekin, Ruslan, Toi and
\Q__ Murashka (bottom right). The rest of Pavlov's dogs and their corresponding Drosophila memory mutants can be found on the author's
A e . i webpage at www.cshl.org.
https://en.wikipedia.org/wiki/Classical _cofi#fitidning#/medi https://www.sciencedirect.com/science/article/pii/S0960982203000666

a/File:lvan_Pavlov_research_on_dog's_reflex_setup.jpg



https://www.sciencedirect.com/science/article/pii/S0960982203000666
https://en.wikipedia.org/wiki/Classical_conditioning#/media/File:Ivan_Pavlov_research_on_dog's_reflex_setup.jpg
https://en.wikipedia.org/wiki/Classical_conditioning#/media/File:Ivan_Pavlov_research_on_dog's_reflex_setup.jpg

Classical conditioning depends on degree of
stimulus-outcome correlation

A 0% Unpaired shocks Strength of conditioning

S NN .
JF 51 B I l _

B 20% Unpaired shocks

ce W W B M W N W N W
us 8 1 8 18 B

&=

C 40% Unpaired shocks

cs— I M N N B N N N N
vs 21 L g8 |8 9

Kandel. Figure 65-12




Kamin’s blocking experiment

1. Conditioning

3. 2" conditioning 4. Test

'l'll%l& \r \

(), predicts food
" already.
O SUTpFise. ..

“Blocking

”

* Learning occurs only when expectation is violated!

* What is the neural basis of this?



Dopamine neurons in the ventral tegmental area

Before
conditioning

After
conditioning

What is this R

for? Y

* Lack of reward responses when the reward was fully

predicted

(Schultz, Dayan, Montague,
1997)



Dopamine as reward temporal difference (TD) error: reward prediction
errors!

No prediction
Reward occurs

» Dopaminergic (DA) neurons fire phasically
(100-500 ms) after unpredicted rewards or cues that

Reward predicted .
P predict reward.

Reward occurs

» Their response to reward is reduced when a reward
is fully predicted (the phasic firing happens at cue
presentation).

Reward predicted

No reward occurs * DA activity is suppressed when a predicted reward is

omitted (negative prediction error).

(Schultz, Dayan, Montague,
1997)



Key concept: peri-stimulus time histogram

The Peri-Stimulus Time Histogram (PSTH) plots the average
firing rate of a neuron over time relative to the onset of a
stimulus. Here's how it's typically calculated:

1. Define a time window around the onset of the stimulus.

Divide this time window into small bins.

3. Count the number of spikes (action potentials) that occur
within each bin across multiple trials.

4. Average the spike counts across trials for each bin.

5. Plot the average spike count (firing rate) for each bin as a
function of time.

N

Count

Trial Number

324

284

24

20

16

Channel 3, n = 17 trials

Peristimulus
Channel 3, n = 17 trials

Raster

0.1
Trial Window, s

0.2

0.3

0.4

0.5

https://colab.research.google.com/github/MMathisLab/Nx-435 EPFL/blob/main/Notebooks/Demo_PSTH.ipynb



https://colab.research.google.com/github/MMathisLab/Nx-435_EPFL/blob/main/Notebooks/Demo_PSTH.ipynb

Dopamine circuitry of the brain

PFC /

NAc

Ventral Tegmental Area

Dopamine (VTA)‘—<'<

\:>
/\/

Before

(++)

During
(+)

After A (0)

After learning, reward ()

neurons omitted
« Dopaminergic neurons are ~55-65% of VTA v
neurons A A
» The rest are mostly GABAergic inhibitory :
Stimulus Reward

neurons or Glutamatergic neurons



How could a system encode a temporal difference (TD) error

TD error as a derivative-like O(t)=r(t)+y*V(t+1)-V(t)
computation:

(neurally doable!) t = time

r =reward
V(t) V(t) = value

y = discount factor

,’ \ d = prediction error
Vit +1)

y*V(t+1)-V(t) /\

r(t)

J(t) /\ Dopamine .—<,<

neurons




Dopamine circuitry of the brain: drugs have strong effects

Addictive drugs cause an increase in mesocorticolimbic
dopamine through three distinct cellular mechanisms:
* (1) direct activation of dopamine neurons (e.g.,

"

nicotine)
g:sctaatsr;e Opioids + (2) indirect disinhibition of dopamine neurons
Amphetamines GHB . [opioids, gamma-hydroxybutyric acid (GHB),
Cannabinoids cannabinoids, and benzodiazepines)

DOPAMINE Benzodiazepines

* (3) interference with dopamine reuptake (cocaine,
ecstasy, and amphetamines).

Drug-Evoked Synaptic Plasticity Causing Addictive Behavior

Chrigtian LOscher
Journal of Neuroscience 6 November 2013, 33 (45) 17641-17646; DOI: hitps:/dol.org/10.1523/INEUROSCI,3406-13.2013 37



Cohen et al. 2012,
Paper round-up

They identify 3 types of neurons in the ventral tegmental area.

They differentiate dopaminergic and GABAergic neurons using optogenetic tools.
They characterize dopaminergic neurons diversity (excited by either reward,
reward-predicting CS or both) which seems to be related to the effect of training.
They show that some dopaminergic neurons might not strictly follow canonical RPE
coding.

They show that GABAergic neurons parametrically encoded the value of upcoming
outcomes.



Motor learning &

neuromodulation




Pl‘L

Part 1 conclusions

Mice can learn to rapidly learn a new sensorimotor =1

mapping (motor adaptation)

Forelimb S1 is essential to adaptation (in this task), but
inactivation of S1 did not effect motor control

Mouse brain diagram

Theory-guided experiments suggest S1 does not exclusively from the Allen Institute

house an internal model, and sensory prediction errors (vs.
) drive learning

Ongoing work: what are neurons in S1 encoding ...

What other systems are can modulate motor learning?



Summary Part 2

* Neuromodulators refer to neurotransmitters that act primarily though G-protein
couple receptors, rather than ligand-gated excitation and inhibition.

* Neuromodulators can have diverse effects due to the variety of their receptors.

* Acetylcholine is one commonly studied NM.

» |tis associated with mediating plasticity and arousal, as well as encoding cues and
outcomes.

* Bioelectric interfaces are a tool for manipulating NMs that can act on a more rapid
timescale than pharmaceuticals.
* They also have high potential for targeted treatment due to closed-looping.

* VNS is a BMI that can enhance rehabilitation after stroke through closed-loop
stimulation.

* There is evidence that this effect is mediated, in part, by activating cholinergic
neuromodulation.



AGENT: BIOLOGICAL CNS

~

Reverse engineering adaptive behavior

ENVIRONMENT

AGENT: MODEL CNS

Proprioception
Touch

Vision

Motor

| ® motion capture

e constrain model |

N
Sensory:

Proprioception
Touch
Vision

Motor
High-level
controllers

Motor
Low-level
controller

3
Hausmann et al. Current Opinion in Neurobiology 2021



The neural control of movement

" DESCENDING SYSTEMS |
Upper motor neurons

n

Motor cortex BASAL GANGLIA
Planning, initiating, and | Initiation of intended movement and
directing voluntary movements L suppression of unwanted H\OVM!
Brainstem centers
| CEREBELLUM
Rhythmic, < Coordination of . ¢

movements and postural control |

Y

J

| A—

SPINAL CORD AND
BRAINSTEM CIRCUITS

( Sy Foc )

Purves, Figure 16.1

Four systems make essential
and distinct contributions to motor control:

The spinal cord (and brainstem circuits)

* The cerebellum

* Descending control centers in the cerebral cortex
and brainstem

* The basal ganglia



Theory-guided framework for studying motor leaming

How do animals (and agents) learn to adapt?

Task goals

Noise
Motor command ? X
l Control Policy | \L 4
/N Internal Forward \
Model
;Noise

. Sensory
[State Estimator ] Feedback

1

Sensory feedback
Sensory prediction error about force field perturbation
— —_~ K N
Wolpert et al. Science 1995, Todorov & Jordan 2002 m k+1 — m Kk + Kk (S — S )

®  |zawa & Shadmehr 2011, Kawato & Gomi 1992, ..., Scott 2004

“=0" (memory hyp.)

10



What are neuromodulators?

Neurotransmitters (NTs) refer
to any chemical released from
neurons that activate
receptors on other neurons.
Glutamate and GABA are the most

common NTs, accounting for
approximately 90% of all neurons!

Neuromodulators (NMs) refer
to a subset of NTs that alter do
not directly activate ion-
channel receptors, but instead
alter neural responses to
excitation and inhibition.

Noradrenaline

OH
HO NH,
HO
Dopamine
HO NH,

-

HO

Se

HO

rotonin
NH-»

N

N
H

Acetylcholine

RO

HsC

3
/N \/\O)]\

O

CHs

Avery & Krichmar, 2017

22



DBS for Parkinson’s
disease and essential
tremor.

SCS for chronic pain.

TMS for depression,
OCD, and migraines.




Closed-loop stimulation may increase neurostimulation efficacy and
reduce side effects

Open-loop stimulation

Stimulation

Stimulator
Evaluation by
newrologist
€ Manual
adjustment of
Programming stimulation
Session parameters

b

Closed-loop stimulation

Snmulark

Biomarker

Sensor

Adaptive adjustment of

Stimulator stimulation parameters
/ turning ON/OFF
the stimulation
Programmer
Processed
signal
Processing
~— 7 Unit
Measured

signal




Closed-loop paradigms can be
targeted towards many types of
triggers:

Environment triggers - tones, or
task outcomes

Biomechanical triggers - certain
movements, or tactile sensations

Physiological triggers - neural
activity, muscle activity, hormones

Controller

Desired
movement
goals

Recorded
neural activity

Plant

I Terme e
(AT R T IR
L T

Sensory
feedback

Decoder

Decoded
movement
intention

Y

Movement space

Actuator
(e.g., cursor)

s @




bronchi constriction

N The VN innervates
= i .

* most visceral

T organs

Stimulating the VN
activates the
parasympathetic
nervous system




A Day 1 after therapy B Day 90 after therapy c Day 90 after therapy
8- - % 100
7 | %
A * 60
é . g
Therapist presses thumb g % 50 L
THERAPIST \' switch and initiates VNS PATIENT 5 5+ - @
= § during movement S 8. 40
w 4 — )
5 geeeeeeeee- 2 o 304
£ 31 - y 3
£ < 20
2 - =
[
1- B 104
0 T 1 T 1 0 T
D E F
0-6 B * 100 7
W
0-5 1 604 *
* . S
X -
% 04 . = 50
3 S 40+
t 1 30 1
i =
Wireless Implanted S 02- N L:
transmitter device § 20
014 7 10
0 T 1 T 1 0 T
Control VNS Control VNS Control VNS
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UNS activates multiple neuromodulatory systems

A

VNS is a “messy” stimulus:
Serotonergic,
dopaminergic,
noradrenergic, and
cholinergic systems are
all activated.




The cholinergic neuromodulatory system

~

V

Thalamus

Cholinergic
neuromodulation is

closely linked with
\g learning and
plasticity

y
Si - Hypothalamus

Basal Forebrain
Cholinergic Sysw B

Cholinergic System



A Dorsal

—?—’ Anterior
°
°

Best freq (kHz)

Cholinergic stim.
enhances plasticity

A Acquisition

Cholinergic activity
impacts motor
learning

T T T T T T T T T T T T T
1 2 3 4 s 6 7 8 g 10 N 12 13

Time (days)

dff

Expected reward

Surpnsmi reward

Expcc ed reward

Surprising reward

T|me from reward ( s

Trial# &

N
w

Trial#

Likely reward

Unhkely reward
l

—_

T|me from stlmulus

Cholinergic neurons
encode cues and
outcomes



Bowles et al., 2021
Paper round-up

VNS paired with success enhances skilled motor learning in healthy animals

Enhanced motor performance is due to accelerated consolidation of an expert motor plan
Enhanced motor learning depends on cholinergic neural activity in the basal forebrain

In primary motor cortex, VNS specifically modulates outcome-activated neurons



Visual System

Neuroscience




Summary

Center-surround model and it's ethological relevance (motion)

Anatomy of the visual pathway, and in particular, cortical layers

The retina is an evolutionary old structure, and adapted to the niche of the animal
Zebrafish are a great model systems neuroscience due to their small size and optical
transparency

Zebrafish display a wide diversity of visually driven behaviour such as the OMR, prey
capture and predator avoidance

The organisation of the zebrafish retina — 4 cones with UV cone being integral for detecting
prey

Retinal ganglion cells act as feature detectors, providing parallel processing streams to the
brain

The tectum has a highly organised structure and acts as a local motion detector classifying
prey and predators

The tectum uses this information to trigger approach and avoidance behavior



The Visual pathway

I?‘orsal p”athway + location, motion, depth
("where ) « color-blind

w ]
S

Ventral pathway

(“what”)

\ = 7[_'__/.-
+ object recognition
* color

Parvo

Retina
(t (o =
\ vocro Py
4 O\
LGN 2

(lateral geniculate nucleus) e
Principles of Neural Science 12



What are neurons in V1 encoding?

Orientation selectivity (Hubel & Wiesel) Spike triggered average
0sec 2.5sec 5sec 7.5 sec 10sec
_= Lightbar (B) Sh'_mulu§ Stimulus 3 M‘
’ | = 2 | B2
I |
] | m|||||= i "
' B ) \\ . I’c
E B 1.\ | Y%
— | .
o1 2 3 . e e U % B % & % o

Time (s)

Example for a V1 neuron with a "simple" (bar-like) receptive field |

Purves Fig. 12.8

Niell and Stryker, 2008



V1 simple & complex cells

1 Bar stimulus 2 Spot stimulus

? — Ay Response 10 onentation of stimulus A, Response to position of stimulus

% _’__ . B N - !

% . +HiH| —E— HH| 44—  [HH
S — B —— B — He
B —— o = BH ‘B 5— 'EE
. T —t—lt d — g i "
1 0 1 2 3s Iﬁf_ —_— ﬁ_} H— [*‘H‘E_

: B4 * Orientation specificity!

* Orientation specificity!

Principles of Neuroscience

1R

* Less sensitive to exact locations
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The beginning of the visual system: retinal ganglion cells and the Center-Surround Model

Center-Surround Receptive Fields

The center-surround model is based on the organization of the RGCs'
receptive fields, which are the specific areas of the retina where light
stimuli can influence the firing rate of the cell. These receptive fields
are structured in a center-surround arrangement, consisting of two
distinct parts:

*Center: The central part of the receptive field can either be excitatory
(increasing the cell's firing rate when stimulated by light) or inhibitory
(decreasing the cell's firing rate when stimulated by light).

*Surround: The surrounding part of the receptive field has the
opposite effect to the center. If the center is excitatory, the surround is
inhibitory, and vice versa.

Image adapted from https://muse.union.edu/visualmotion/center-surround/



The beginning of the visual system: retinal ganglion cells and the Center-Surround Model

Field of view: If you record from a retinal ganglion cell (RGC).
They fire APs with generally two types of responses:

* -ﬁ "ON-center":

1 AP- frequency
On-center

ganglion cell

in the center of the receptive field (RF)

"OFF center"
| AP-frequency

Off-center in the center of the RF
ganglion cell




Hierarchical visual processing

Receptive fields size Features

(///\1// T A I

I LGN &
g\z ‘\\ edges V4 i
e and lines
— V2
V7 Paind
‘ // \\
faces = shapes vi N

and objects vl i

* V1 neurons are most sensitive to low-level features, such as edges and lines.

* In higher visual areas, like V4 and IT, receptive fields are larger, and neurons
are sensitive to complex features, such as shapes and objects.

* Responses of high-level neurons are fully determined by the neural firing of
From: When crowding of crowding leads to uncrowding lower-level neurons. For example, the neural firing to a square is determined
Journal of Vision. 2013;13(13):10. doi:10.1167/13.13.10 by the neural firing for two vertical and two horizontal lines.

faces

objects

shapes

edges

and lines

17



Drift diffusion models: accumulating noisy evidence

e Variability in response times and judgments

» Effect of difficulty on response times

Evidence

Stimulus —
(Uchida et al., 2006) ’



The beginning of the visual system: retinal ganglion cells and the Center-Surround Mode

Field of view: If you record from a retinal ganglion cell (RGC).
They fire APs with generally two types of responses:

* -ﬁ "ON-center":

=2 i — 1 AP- frequency
On-center

ganglion cell

in the center of the receptive field (RF)

"OFF center"
| AP-frequency

Off-center in the center of the RF
ganglion cell




Zebrafish general neuroanatomy

The mouse brain Zebrafish brain

N

Olfactory bulb
- No cortex!

Coftax - Optic tectum is the main visual
area and sits on the dorsal surface
of the midbrain

- The optic tectum is homologous to
the superior colliculus in
mammals

Superior

Cerebellum Eallcirus - Contains a large neuropil region

(tectum)

where neurons from the retina
provide visual input.

Fb = forebrain

OT = optic tectum
Cb = cerebellum o
Hb = Hind brain



Key concept: the Gal4-UAS system

i:.,\«

B 102 GALA g 7012,

GAL4 axpression

® oo

Reporter exp

(Asakawa et al., 2008)

The GAL4-UAS works in a similar way to the cre-recombinase
system that is used in mice

GAL4 is a transcription factor that binds to an upstream

activator signal (UAS) causing transcription of the downstream
reporter (such as GFP).

If the Gal4-is placed downstream of a particular endogenous

promotor then this can restrict expression to a single neuron
subtype

35



Retinotopy: RGCs preserve a map of visual space in the tectum

Ganglion
cell m
)
Ganglion cell
axon . T
Neuropil —g- 4 Py Optic
P tectum
Periventricular —7 %

cell body layer

(Bollman 2019)

This means that within the tectum there is a map of
visual space (A retinotopic map)

When neurons are active in a particular region of the

tectum = possible locate the position of the stimulus
invisual space

43



V1 RFs resemble Gabor filters and neural response is
sparse

Gabor filters

Gabor Function

One Dimensional
? “
S Qé\ %
TwoDimension 3

ERECENRIAZN
BEO A SNl
PrRE S
edge detector neurons SR 9 Representatmns
can be explained with ~ —psa™-» ENNERE "EEN .
sparse autoencoding SR IA@=ZAPN in ImageNet
ARN AN asE .
READSEENIY trained (CNN)
1Y) = ) adix,y) +€(x,y) NDEUEEENZE
i I(xy) b ) 4 ¢i(z,y)

Adapted from A. Mathis
Olshausen & Field, 1996 Nature



Modulation of Visual Responses by Behavioral State
in Mouse Visual Cortex

As: /\ D

10
B stationary ’
8 I moving
B anesthesia
Optical 8 6
Mouse &
2 4
2 , 2
Sh
/ 07———7 , . —
Air —~— spontaneous evoked
— ]

Niell & Stryker, 2010



Dunn et al. 2016
Paper round-up

They provide the first detailed description of a rapid escape behavior elicited by a visual
stimulus in freely swimming larval zebrafish.

They suggest that the circuits processing looming stimuli may primarily use stimulus size
information when determining when and if an escape should be initiated.

They show that the optic tectum (OT) might serve as a primary nucleus involved in
looming detection within the larval zebrafish brain, by encoding a critical looming visual
angle as an ensemble.

They establish a necessary role of the M-system in the sensorimotor transformation from
looming stimuli to escape behavior, providing a functional scaffold for the zebrafish to
quickly evade threats identified with their eyes alone.



Neural analysis




Summary

Neural encoding and neural decoding are fundamental descriptions of neural (coding) processing and
data analysis.

A fundamental goal is: how much information does K have about x

We mathematically model this as P(K]|x), where the neural response of population K to a stimulus (or event)
x. K is a vector representing the activity of N neurons, and each entry represents, e.g., the number of spikes
in some time bin or the rate response of that particular neuron.

Generalized Linear Models (GLMs) are very attractive for both individual neurons and populations, yet
assume linear @ dynamics (careful: despite having a nonlinear parameter).

Modern hardware advances continue to push the upper limit on the # of neurons we can record, and therefore we
need new mathematical tools for understanding neural coding.

Manifold of behavioral and neural data hypothesis comes into play...

Two large classes of approaching modeling a system: data-driven or hypothesis (task)--driven

Modern methods for mapping the statistical properties of neurons to a stimulus/behavior are fully-observable models
and latent variable models.

Latent variable models infer hidden (i.e., latent) variables that capture the underlying structure of the observed data
through a joint probability distribution.

VAEs and contrastive learning approach to neural analysis; contrastive learning (CEBRA) has highly attractive
properties like combining across datasets and producing consistent latent embeddings.



=PrL What information is our brain trying to encode & decode?

Stimulus Spikes

—)
=y

* How do neurons (K) respond to a certain stimulus (x)?
* Our brain needs to determine what is going on in the

real world from patterns of spikes.

» We mathematically model this as P(K|x), where the neural response of population K to a
stimulus (or event) x.

» Kis a vector representing the activity of N neurons, and each entry represents, e.g., the
number of spikes in some time bin or the rate response of that particular neuron.



Input dimensions

Generalized Linear Models

GLMs

scalar output, y
time

e —

B
|




Poisson GLM

Output:
discrete spikes

* In the model, each neuron’s input is described by a set of linear filters:
 astimulus filter, or spatial receptive field (8)

p: = exp (z 0; xt—i)
7



Details: Poisson GLM

Poisson Distribution: Single Event Likelihood: All Data Points
*Probability of events y, at time ¢ «Joint probability as the product of individual probabilities
: *Formula
*Formula: A\Ye— A P(y1 : T) = [ P(’yt)
Py =y) = ! t

*Assumes independence between data points

*A: rate parameter (average number of events)
«yl: factorial of y (number of events) ‘ Simplify!!
Link Function and Predictors Log Likelihood
* Alinked to predictors x;
» Canonical link function: natural log _
« Formula: log £ = Z log P(y:)
t

A = exp(6Tx;)

*&: model parameters ( as a vector)
* X; : predictors vector



GLMs in action: Pillow et al. 2008
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Linear decoding

Poisson model
Uncoupled model
Full model
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o

Bayesian decoding

GLMs with coupling filters were
shown to capture 40% more visual
information from the retina than
optimal linear decoding, indicating that
GLMs can model additional details in the
activity that are relevant for representing
the stimulus!



Population analysis can reveal core

principles of neural coding

Urai et al Nat Neurosci 2022
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¥
Behaviorally relevant neural
variance within a small
number of dimensions

Neural computations at population
dynamics but not in
single-neuron firing rates

Intrinsic attractor manifold
and population dynamics of

& o . oas . .
] 3 a canonical cognitive circuit
%ﬁ-x across waking and sleep

Chaudhuri, R. et al. Nat Neurosci 2019

Manifolds for measuring
neural trajectories

Neural manifold Behavioral manifold

of interest (NMOI) of interest (BMOI)
tional correspg, )
Neuron 3 c o“e\a '7(7'3,70e Variable 3
Neuron 2 Variable 2
Neuron 1 Variable 1
T

Mehrdad Jazayeri and Arash Afraz Neuron 2017

How can we (consistently) extract the behaviorally-relevant
latent dimensions from neural population activity?



=PFL Nonlinear embeddings via linear dynamical system (LDS)

Dynamics of n neurons are modulated by LDS fLDS: exchange observation model
w/ m-dim latent state (z) that evolves: such that each neuron as a separate
nonlinear dep. on latent variable:
Zy1 N(/Ll ) Ql ) A = linear dynamics matrix (m x m)
Q; = covariance of initial states
Zr(t+1)|z1't NN(AZ”,Q), Q = Gaussian noise
Observation model:

:Ertilzrt ~ Py ()\rtz’ — [f(zrt)]i)- CUrtz‘|Zrt ~ Phx (/\rti — [fw(zrt)]z‘) )

where [f(z,+)]; is the i'" element of a deterministic “rate” function f(z,) : R™ — R™, and P(])
is a noise model with parameter A.

(a)Reaching trajectory  (b) PLDS (c) PILDS

Lincar dynamical scural population modeds through v v
nonlinear embeddings

— - t:‘ — \_'

Wonmpon o, Kvan Archer ', Ui Pustonkl . ok I Cummtnghun
Cxpatmcss = Vaaman wnd {remamn ot
[ —
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Latent (hidden) underlying Observable neural data

brain-state factors (z)

B e W

X= (X1' X2, 56Xn)

neurons
»>

Z=(242;....2,)

time

z - x=g(2)

Mixing function

® |dentifiable: “the sources can be separated”- Aapo Hyvarinen

Identifiable non-linear ICA: the problem setting....

Non-linear ICA attempts to find non-
linear components such that they
correspond to a well-defined generative
model (Hyvarinen et al., 2001; Jutten et
al., 2010).

The aim is to recover the inverse
function g as well as the
independent components z based
on observations of x alone.



&7 CEBRA : an algorithm for joint modeling of auxiliary & times series data

Al Nonlinear encoder Contrastive learnin Low-dimensional
»CEBRA — © >
i ///// (neural network (f)) # (loss function) embedding
i [
BERviou /.\ ® N Final layer
labels . \_J A — — L
: M\ [ Attract (L) output
Time : I" \ similar
labels L samples
1 11
le [+ |@-0.:0 0. .- o
W W ' W
Neural data | | 1 2 4]
(N) IZ' ! L \ Repel Dt
= P dissimilar
L ] o samples

X~p(X) y+~p(y| X)

n
- (X,y4) + logz eP X yi)
Y1,-¥Yn~q(y|X) i=1

Schneider, Lee, Mathis Nature 2023
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Deep learning in the laboratory: leveraging transfer learning

DeepPose DATA hungry algorithms... how to bring this to the lab?
. DeeperCut
OpenPose Transfer Leamning: take a trained network and ask it to leamn a new task

Conv. PoseMachines
HRNet

deep neural networks

image—> Predictor |l 481
ConvNets (such as ResNet-50, etc) cat

train A lot of labeled 1'},', Je :
images (>1046 jointsl) s '
i j
Andrew Ng 1 Deep learning i \i :

“A.Rw : NET

Olga Russakovsky*, Jia Deng®, Hao Su, Jonathan Krause, Sanjeev Satheesh,

Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein,

A fd Alexander C. Berg and Li Fei-Fei. (* = equal contribution) imageNet Large Scale
mount of data Visual Recognition Challenge. International Journal of Computer Vision, 2015.

Performance

v




Built on the open source python stack:

User testing/dev & deployment:

Croate a project

Seloct + Tran your
Go0p NeUrN Nedwors

iract Mamaes «
GU 10 labwel your data

Larger scale pipeline computing:

amazon

webservices

Real-time specific tools:

DeepLabCut-Live!

T . - e

‘./} @ python’

Classifiers: SVMs, Random Forrest, ANNs
- B-SOID, ETH-DLC Analyzer, simba

Models: HMMs, decision-trees, ANNs

Ethograms: BORIS, BENTO

Clustering: MoSeq, MotionMapper, JAABA

Motor analysis: DLC2Kinematics



Advances:
» Zero training from scratch could be required (huge energy savings & time/compute!)
« Zero-shot inference, or only tens of images for rapid fine-tuning required
* (networks: gradient masking, memory replay, semantic mapping)
» Zero-shot video inference, or 1.3x video inference w/test time aug.
* Tops 00D pose benchmarks

Still (more) challenges:
* TopView rodents & quadrupeds are not all animals in neuroscience
Do we build centralized models, or groups build their own SuperAnimals?
good data sharing practices // central resources?
Is this really foundational?



Encoding of

space in the brain




Recap - The Hippocampus
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Huge amount of visual processing until any external
sensory information reaches the hippocampus

In other senses (auditory, somatosensory) there is
similarly complex processing upstream of the
hippocampus - except olfactory inputs that reach the
hippocampus much more directly (olfactory bulb ->
entorhinal cortex)

Such high-level brain areas are expected to be

notoriously difficult to understand: Presumably,
responses must be extremely complex?

Fellemann & Van Essen 1991



Ratemaps

Ratemap

More bins
Different colormap




Autocorrelogram

Correlate ratemap to a
shifted version of itself
and then visualize the
correlation coefficient




The cognitive map

Medial entorhinal cortex Hippocampus

Border cells Head-direction cells Grid cells Place cells

6Hz

Ranck, Taube 1980s

- -4 O'Keefe 1971

Mosers, O’'Keefe, Knierim 2008



Place cells in hippocampal subfield CA1

Many place cells together tile the whole
environment

They provide a map of the environment, in
the sense that the combination of currently

active cells is sufficient to read out precisely
where the animal is in the environment

Physical space is encoded in reference to
the world (allocentric) - it is fixed with

respect to a point in the outside world

O'Keefe et al. 1995



Place cells remap in novel contexts

Place cell locations remap when
context changes drastically
(global remapping)

12.9 Hz
Smaller context changes are ot
encoded as changes in firing Cell 2

rate (rate remapping)

8.5 Hz
2.3 Hz

Cell 3

6.1 Hz
Allows place cells to encode Cell 4

multiple spaces and adapt to
new environments

13.6 Hz
Cell 5

Global remapping Rate remapping

Latuske et al. 2018



Place cells remap in novel contexts

Place cell locations remap when
context changes drastically
(global remapping)

12.9 Hz
Smaller context changes are ot
encoded as changes in firing Cell 2

rate (rate remapping)

8.5 Hz
2.3 Hz

Cell 3

6.1 Hz
Allows place cells to encode Cell 4

multiple spaces and adapt to
new environments

13.6 Hz
Cell 5

Global remapping Rate remapping

Latuske et al. 2018



Fung Rate (M2)
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Hoad Duection (degrees)

A given population
of head direction
cells encodes the
full 360 degrees
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In drosophila the head
direction circuit is
arranged ina
topographical ring with
nearby cells encoding
nearby angles

Head direction cells
are mostly driven
by vestibular input
and visual
landmarks

Taube et al. 1990

Preston-Ferrer et al. 2016



Grid cells in medial entorhinal cortex

Ratemap Autocorrelogram

Monkey

Posterior

Intermediate  Anterior

|@® Hippocampus OEC|

Strange et al. 2014

Entorhinal cortex (EC) is a major form of input to the Animal trajectory is visualized in grey and the
hippocampal formation and is further split into medial (MEC) spikes are overlayed in red
and lateral (LEC) entorhinal cortex
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Grid cells form modules along the dorsoventral axis of EC

. ‘ Scale /
' \‘ Spacing

pr—— ~

B/ W
:‘:‘ Phase
©., @
. W

Orientation

The expansion is not linear but step-like, suggesting that the grid-cell
network is modular.

(% Modude 1 » Modude 3 |
Fl * Modde 2 » Module ¢

F -
[ | %
Gna sgacng lemd mn mas ‘

Geld scale

Scale of grid cells increases topographically from dorsal to the ventral part
(~30cm dorsal to several metres ventral)

PONS 6th Ed. 54-13
Moser et al. 2015



Allocentric and egocentric coding

Allocentric encoding cells Egocentric encoding cells

—
-—
Hinman &1 4. 2019
The transformation between egocentric and allocentric sensory information (egocentric) is processed
coding cells is governed by head direction cells which and transformed into a stable, map-like

anchor egocentric coding cells to the world (allocentric) representation



Encoding of abstract spaces

Participants in an fMRI scanner learned
association between objects and birds (with
variable neck and leg length) -> a novel

abstract 2D space
-3
= During trajectories through that space grid-
5 % like activity in entorhinal cortex can be
2 % observed
3*_
- = This shows that the cells underlying physical

Neck length  y=-4 EC space also encode abstract space



Periodic firing S umma ry Vector computation

Start d=75cm Goal /
a

b

w
P @D CTOCTOTO@D TOOCTOCE 5i=50em
r @OOO@OO@DOOD@ s:=30cm
P @OO00OOOVOVOOOODV si=20cm

Phase precession
/ \4",
raraters— SO 2"
parameters E M-
% 2n
-
E £
E ) £
Tiling of space o g = 50% 100%
g B Pk b . = 00 3 0.6 Progress through grid field
SARS . Time (s) :
Sie. : Encoding of abstract spaces!
o] . -
g e F P C i { PCC
ES3 's;-‘?. i i |
o, © &
LB 3 = < {
Rt B 3 2 J
neuron 1 f - o 2 ’ .
neuron 2 o § ¥|4 ‘ Hafting et al. 2005
neuron 3 e Y 4 . J 3 i - Fiete et al. 2008
il : v J b Bush et al. 2015
) - : > il Stemmler et al. 2015
Ventral Neck length

Behrens et al. 2018
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Summary

Place cells serve as landmarks in the brain's cognitive map, firing
when an animal is in a specific location

Grid Cells create a hexagonal grid of spatial firing, acting as metric
for the space (estimating of distances or vectors)

Head direction cells act as a neural compass, firing based on the
animal's head direction, crucial for transforming egocentric to
allocentric signals

The collective activity of these cells forms a comprehensive
cognitive map for navigating complex environments.

These mechanisms also enable the encoding of abstract spaces,
suggesting a fundamental role in imagination, planning, and
memory.




Hafting et al. 2005
Paper round-up

They propose that the dMEC is part of a neural map of the spatial environment.

They find a novel cell type in the dMEC that would be the basic unit of the map:
the grid cell, which shows periodic firing as a response to non-periodic behavior.

They show that the grid spacing, orientation and field size are topographically
arranged from dorsal to ventral entorhinal cortex.

They show that the grid phase vary randomly among co-localized cells, so that
the full surface of the environment is represented within a local cell ensemble,
suggesting a modular local organization of the spacial map.

They suggest that grid cells are aligned to external landmarks but also persist in
darkness (further work challenged that last point!).

They find that the grid structure in the dMEC is expressed instantly in a novel
environment, suggesting that the periodic structure is encoded by default, and
the phase and orientation are set in relation to context-specific landmarks.
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Intermediate Take Homes:

NN models can be trained on different
visual tasks to make hypotheses about the
goal of the visual system

Better NN models at the categorization
task predicted IT neurons better

Task mattered more than architecture or
depth of networks

Three points to consider when comparing:

Task information consistency
Single-unit response predictivity

Population representational similarity

q - ) M "o RO
@ %/‘ Mu;‘ B-- va - !‘-2‘- )-»| »2 IE ')
Yamins and Di Carlo, Nat Neuro 2016

B v v "

[P
°
o
R o
~

O
Mome ot P bty

“

T
2w o

w0
- -

14
-~ 0%

Loy

e
Layers

S predctivty

§.

ewere e e

28



Summary

e NeuroAlis an emerging discipline that crosses across systems neuroscience and computer science

e It’s goalis broadly to use neuro insights to build Al, and to develop Al for understanding the brain
(neuro)

e I|tis needed as it is still VERY hard to develop embodied Al, human-like movement into robotics, and
we still lack generally intelligent systems (although LLMs for language are impressive ... )

o Key example in Neuroscience inspiring Al: convolutional neural networks (likely transformers too
“attention”): this is a hot area in industry — using cognitive neuro approaches to study NN btw!

e Interestingly, CNNs developed representations similar to the brain

e Key examples of Al influencing neuro: better behavioral analysis tools, better neural analysis tools (see
also BCl week soon!)

e What is missing? NNs are very simple “neurons,” that lack the complexity of what we find in the real
brain: an opportunity awaits!

e Data-driven and task-driven modeling: key approaches in neuroAl

e How do we model sensory systems: examples in vision and proprioception

e What to consider: both how close they are at single cell, task performance, and population level
similarity

® Ongoing efforts: Brain-Score, Inception Loops ...



What is neuroAl?

Neuroscience ﬁ Artificial Intelligence (Al)

[Foamres]
@ = Hubel & Wiesel discoveries in cat
D e V1 inspired convolutional neural
0 e networks

P\ A
\ o e

Convolutions Representations
cat (CNN) in ImageNet

trained (CNN)




What is neuroAl:

* Many definitions, but widely accepted that it is the new inter-disciplinary field of merging

neuroscience and Al research (€ =)

* Others define is more narrowly as using neuroscience (=) to shape research in Al

nature neuroscience

Explore comtent ¥ About the jowrnal v PAleh with on ~

AER 7 DR DRUTDACENCE » Daeelwe L ]

Adeepleamingframeworkfo:neurosdence
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through NeuroAl
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Data-driven modeling

GLMs, PCA, Sussillo et al. 2015 Nat Neuro
State-space models, ...

Record from neural data
S during a behavioral task

e 00
9 o0 : attract similar
GLMs ® f? e ~ samples
9
P “
@ e
: . ) T. : ropel dissimilar
ANNs 8 & e

(CEBRA)

Schneider Lee Mathis 2023 Nature

Joint models that describe
neural variance & representations

Task-driven modelling

Yamins et al. PNAS 2014, Kell et al. 2018 Neuron,
Banino et al. 2018 Nature ...

Constrain ANN based on
behavioral task to test
hypotheses about a system

Sandbrink et al. 2023 eLife

L L Data

s Linear model
H'

NMP S, unit 1, DNN EV=0.640, hrwar EV-0.607

Marin Vargas et al. 2024 Cell

NN models that describe
neural variance & computationally
constrain system 14



Building models of visual pathway: the ingredients

Task-driven deep neural network models are built from
three basic components:

1. model architecture class from which the system is built,
formalizing knowledge about the brain's anatomical and
functional connectivity;

2. a behavioral goal that the system must accomplish,
such as object categorization; and

3. a learning rule that optimizes parameters within the
model class to achieve the behavioral goal.

Yamins & DiCarlo (2016)

25



What other tasks”? What other stimuli is the brain (visual)
encoding?

Biological: recordings in visual system Building “digital twins”, NN models of the system

vision

Closed loop
experimental

Hubel & Wiesel discoveries in cat V1
inspired convolutional neural networks

Can we use our NN to produce
predictions of optimal stimuli?
Can this help reveal anew
computational principle, or
validate a discovered rule?

We now now a lot more (faces,
motion, value coding) but we
never can give enough stimuli ....
What would the ideal stimulus

be fOI‘ a given neuron? Mathis, Perez Rotondo, Chang, Tolias, Mathis (unpublished) 31




Brain Machine
Interface for
systems
neuroscience




Summary

Overview:

*BCls, or Brain Computer Interfaces, are systems that facilitate a direct communication pathway between a brain and an external
device. This technology enables individuals to control devices using only their brain signals.

*Recording neural activity is the foundation of how BCls operate. Specialized algorithms, known as decoders, are then employed to
interpret these signals into commands that can control devices or computer systems.

*The importance of (encoder-) decoder algorithms lies in their ability to translate neural activity into actionable instructions for external
devices, making them integral to the functionality of BCls.

Systems Neuroscience Contributions:

sInstrumental in identifying optimal brain areas for signal recording, understanding neural subtypes, and designing effective sensory
feedback within BCls.

+Insights into neural dynamics, such as the relationship between neural firing and sensory stimuli or motor actions, thereby informing the
development of more advanced BCls.

*Current research in systems neuroscience contributes to BCls by examining the principles of encoding sensory information into neural
activity and decoding it back into the brain.

Current Technologies in BCls:

*Microelectrode arrays are a key technology in BCls, allowing for the stable recording of neural activity over extended periods. These
arrays can be implanted and have been used in both research settings and, to a lesser extent, in clinical applications to assist individuals
with paralysis.

*Two-photon holographic optogenetics represents a cutting-edge approach in BCI technology. It enables precise manipulation and
recording of neural activity using light (calcium imaging and optogenetics).

*Technological advancements in BCI include increased recording stability and longevity, more biocompatible materials for implants, and
higher throughput in signal recording. These improvements are crucial for the reliability and user-friendliness of BCls, ultimately
enhancing their applicability and integration into various aspects of life and healthcare. Ethics are also deeply important to consider.



Simple overview
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How systems neuroscience is enabling advancements in neuroprosthetics & BCls

Neuroprosthetics in systems neuroscience and Neuroprosthetics
medicine

Our accumulating knowledge in systems neuroscience combined with the development

Visual
impairment

of innovative technologies may enable brain restoration for patients with nervous
system disorders. This Collection provides a platform for interdisciplinary research in Heéring
neuroprosthetics. It will gather studies investigating medical applications of systems impairment
neuroscience, informatics, and engineering in the development of neural prostheses.

Submissions with a clinical focus on nervous system diseases and brain repair in either

humans or animals are also included. outputs

https://www.nature.com/collections/hjcgcjcach

*  Which brain areas to record from stimulation

* Need to understand neural subtypes

. 2 Electronic
* How to give appropriate sensory feedback engineering
* How do we enable adaptation and learning




Reading & Writing into the brain: all optical studies

Calcium imaging + optogenetics
allows for “all optical” access the
neural circuits.

We can design closed-loop
experiments to measure and perturb
neural activity.

We can design these such that we
“closed-loop” record neural activity
and have the animal use this activity
to complete a task.

Spwal scanning CGM (20 or 30y

SLM
K

A

Lf-,-

Mubiplexed scantess 3D-CGH wih semporsd

focusing (MTF-CGH)

% i AN
4
& .|!t!~ (,i;

Adesnik, H., Abdeladim, L. Probing neural codes with two-photon holographic optogenetics. Not Neurosci 24,

1356-1366 {2021). https://doi.org/10.1038/541593-021-00902-9
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Center-out motor task

) ) The taskis very separatable yet
The center-out task is frequently used in motor constrained.

control studies.

It can be performed with a limb, a cursor,
or a robotic manipulandum.

b Baseline
Late CF Washout
PCD
N

Perich, Gallego & Miller, 2018 Neuron Ubeda et al., 2017 J. NeuroEng & Rehab. 38



What are dynamical systems?

A - B
“A set of coordinates, often represented as a n i BIEELET L N;  Neural
vector, describing the instantaneous n® n,| I |l M i t state space
configuration of a dynamical system and that is ng (L L I BIQL) =
sufficient to determine the future evolution of t t t t Time %

that system and its response to inputs.” x(t) X H > ..\E] - E] ‘
X - " t n, n
Initial state Dynamics

x(0) x=f(x)
p/
S

position D state Aﬂspace

velocity

position

Churchland Shenoy 2013

Ann. reviews in neuroscience Pandarinath et al., 2018 J neuroscience
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Rotational dynamics

Monkey B b  Monkey A c Monkey J3
* Low dimensional projections of neural activity : \

during center-out reaching tasks produce highly 3 X
consistent neural trajectories. &
%
* These cyclical trajectories appear to show §
organization based on movement kinematics 2 c =
including direction and velocity of movements. £ VV
d
* This finding suggests that motor cortex acts as 3
a dynamical system, with neural activity §v
evolving over time based on local dynamics o , /
and external inputs. E /o NP
8 ——
: N
Projection onto jPC, Projection onto jPC, Projection onto jPC,
(a.u.) (a.u.) (a.u.)

Chruchland et al., 2012 Nature
43



Athalye et al. 2023,
Paper round-up

e Monkeys were trained to control a cursor in several tasks using a BMI
based on neural activity recorded in motor cortex.

e Invariant dynamics in the recorded neurons could predict the neural
activity that was used to produce a motor command, even when task
inputs were removed from the model.

e Invariant dynamics alter neural activity in dimensions relevant to the
decoder, demonstrating a causal link between invariant dynamics and
motor commands (at least in this BMI setting).

e Adding an optimal feedback controller to an in silica model of invariant
dynamics trained to perform the center out tasks reduced the amount of
inputs needed for successful execution.



Cognition &
skill learning




Summary

Muscle synergies have been proposed as a key principle for motor control

Yet, low-dimensional nature might be underestimated with existing techniques!

For the hand -- learned muscle synergies are highly task-specific, and thus generalize poorly

This suggests that low-dimensional control is an emergent property (of the task/biomechanics/distributed
circuits) rather than the mechanism of control (not a simplifying strategy)

Neural networks are ideal for taming complex biomechanics

Training neural network with a curriculum based learning leads to better performance

Muscle synergies from artificial agents resemble closely the ones from humans



— Muscle
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=prL.  Control spaces are highly task-dependent

& transfer poorly

0.7 - 4
cca 0.6 1 —— Baoding
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© 04. —+— Hand Pose
"_5 - —— Hand Reach
i>J 0'2_ —+— Pen
8 : Reorient
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=P*L. - SDS also discovers a low-dimensional

control space
Joint angles
SDS Position Muscle act.
o 04
Baoding 4.5 12 € 0.2
Control 8 7 S 00
©
Human 2 0.3
Baoding 5 'c_% 0.2 N
o
Control 8.5 5 0.1
086" 5 10 15

Number of PCs

This notion of muscle/kinematic synergy is
purely based on reconstruction error!



Chiappa et al 2024 ,

Paper round-up e sl o
Static to Dynamic Stabilization (SDS) Obsevalion

e They succeeded in training a musculoskeletal ¢, 2 ‘"‘
model on an object-manipulation task. K, @ 0,7

e They propose a static to dynamic stabilization s e
(SDS) curriculum, inspired by coaching practice. Analysis of the learned motor system

e They show that, akin to experimental data, SDS Dimensionality Learned Synergies Analysis of Neural Dynamics
learns low-dimensional kinematic and kinetic
spaces. %& & & Eﬁ " . %\ @ Lt

e They show that muscle synergies are highly task M e sy
specific and thus generalize poorly. befiordida fumpns

e They found that more dimensions contributed to the e - _% _’\3\\\&
task performance than suggested by traditional  SYeles P;;--‘A-gmf:;’m‘f%‘ Low.ms;a.—‘

synergy analysis.

e They found lower tangling of the dynamics in the syrergs s i e 1B 1B ;\\ﬁ
. . ependent and generalize L | —Tasks | L 1 —Task6 ‘
controller state space than in the action state bbbyl i g MJ
space, consistent with previous observations that g g »ﬁ_“_J ,

Number of PCs from Task 1 Number of PCs from Task 2

motor cortical dynamics avoiding tangling more
than muscle dynamics.



