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Intro & 
memory



The Nervous System







Observe

CorrelationLearning            =>   Neural Activity

(Martin and Morris, 2000)

(Eichenbaum, 2016)
(Hasselmo et al. 2002)
(Reijmers et al. 2007)

(Liu et al. 2012)
(Ramirez et al. 2013)
(Josselyn et al. 2015)

(Tonegawa et al. 2015)

Perturb 

Mimic

Block  neurons  =>   Block memory

Activate neurons =>     Activate memory

Necessity 

Sufficiency 

Slide courtesy of Prof. Steve Ramirez (BU)

Criteria for identifying correlation, necessity 
& sufficiency of memory

(Tang et al. 1999)
(Han et al, 2009)

(Denny et al. 2014)
(Tanaka et al. 2014)



Activity-dependent and inducible 
optogenetics

c-fos

ChR2

ChR2 makes cells 
responsive to light

c-Fos is only expressed in active neurons Dox can open and close windows for 
expressing a given gene

TRE           ChR2

tTA

c-fos promoter tTA

tTA

ChR2

   DOX

Behavior

Slide courtesy of Prof. Steve Ramirez (BU)



Using c-fos-tTA mice & ChR2 during fear conditioning

Mice were habituated in context A 
with light stimulation while on Dox 
for 5 days

Then taken off Dox for 2 days 
and fear conditioned (FC) in 

context B

Mice were put back on Dox and 
tested for 5 days in context A with 
light stimulation

Cartoons by Prof. Steve Ramirez (BU)

What behavioral 
readout are we 

going to look for?



Ramirez et al. 2013, Round-Up:
“In particular, a hypothesis of great interest is whether artificially activating a previously 
formed contextual memory engram while simultaneously delivering foot shocks can result in 
the creation of a false fear memory for the context in which foot shocks were never 
delivered.”

● They established a paradigm to genetically tag active neurons with optogenetics
● They show that DG (in comparison to CA1) holds memories and they can indeed 

implant a false memory.
● The optogenetic stimulation drives activity in neurons (remarkably robust!)
● They do this during fear-learning, a powerful innate response in animals
● They additionally show that in a decision-making task the mice can act on their false 

memory



Reward & 
Reinforcement 

Learning



● Marr’s 3 levels provide a computational formulation for studying computations in the brain
● Decision-making is hard: the “credit assignment problem”, delayed rewards, uncertain outcomes
● Perceptual and value-based decision-making can help refine how to study and where in the brain to 

study 
○ Reminder for the neuro-anatomy that supports visually guided decisions
○ Encoding & decoding is critical

● Decision variables (DV), evidence accumulation, and how to use decoding to closed-loop test how DV 
are related to actions → Change of mind in decisions – how did they test this?

● Operant and classical conditioning
● PSTH
● Dopamine (DA) neurons in VTA
● RPEs
● RL & TD learning
● How to formalize finding computations: mapping TD to DA
● Inputs to DA neurons show distributed information and even (possibly) partially computed RPEs
● Distributional RL in the DA population better fits the data

Summary









https://www.sciencedirect.com/science/article/pii/S0960982203000666https://en.wikipedia.org/wiki/Classical_conditioning#/medi
a/File:Ivan_Pavlov_research_on_dog's_reflex_setup.jpg

Before 
Conditioning

During 
Conditioning

After 
Conditioning

Pavlov’s classical 
conditioning

https://www.sciencedirect.com/science/article/pii/S0960982203000666
https://en.wikipedia.org/wiki/Classical_conditioning#/media/File:Ivan_Pavlov_research_on_dog's_reflex_setup.jpg
https://en.wikipedia.org/wiki/Classical_conditioning#/media/File:Ivan_Pavlov_research_on_dog's_reflex_setup.jpg


Classical conditioning depends on degree of 
stimulus-outcome correlation

Kandel. Figure 65–12 



Kamin’s blocking experiment

1. Conditioning

+

2. After conditioning 3. 2nd conditioning 4. Test

?

• Learning occurs only when expectation is violated!

• What is the neural basis of this?

+

predicts food 
already.
No surprise…

“Blocking
”

Kamin, L. J. (1969). Predictability, Surprise, Attention, and Conditioning. In 
B. A. Campbell, & R. M. Church (Eds.), Punishment Aversive Behavior (pp. 
279-296). New York: Appleton- Century-Crofts



 

• Lack of reward responses when the reward was fully 

predicted

Before 
conditioning

After 
conditioning

What is this 
for?

(Schultz, Dayan, Montague, 
1997)

Dopamine neurons in the ventral tegmental area



Dopamine as reward temporal difference (TD) error: reward prediction 
errors!

(Schultz, Dayan, Montague, 
1997)

• Dopaminergic (DA) neurons fire phasically 
(100–500 ms) after unpredicted rewards or cues that 
predict reward.

• Their response to reward is reduced when a reward 
is fully predicted (the phasic firing happens at cue 
presentation).

• DA activity is suppressed when a predicted reward is 
omitted (negative prediction error).



 Key concept: peri-stimulus time histogram

The Peri-Stimulus Time Histogram (PSTH) plots the average 
firing rate of a neuron over time relative to the onset of a 
stimulus. Here's how it's typically calculated:

1. Define a time window around the onset of the stimulus.
2. Divide this time window into small bins.
3. Count the number of spikes (action potentials) that occur 

within each bin across multiple trials.
4. Average the spike counts across trials for each bin.
5. Plot the average spike count (firing rate) for each bin as a 

function of time.

https://colab.research.google.com/github/MMathisLab/Nx-435_EPFL/blob/main/Notebooks/Demo_PSTH.ipynb

https://colab.research.google.com/github/MMathisLab/Nx-435_EPFL/blob/main/Notebooks/Demo_PSTH.ipynb


Dopamine 
neurons

Dopamine circuitry of the brain  

Stimulus                Reward

Before 

During 

After

(++)

(+)

(0)

(-)
After learning, reward 
omitted

Ventral Tegmental Area 
(VTA)

• Dopaminergic neurons are ~55–65% of VTA 
neurons

• The rest are mostly GABAergic inhibitory 
neurons or Glutamatergic neurons

NAc

PFC



How could a system encode a temporal difference (TD) error
TD error as a derivative-like 
computation:
(neurally doable!)

𝛿 (t) = r(t) + 𝞬 * V̂(t +1) – V̂(t)

t = time
r = reward
V(t) = value
𝞬 = discount factor
𝛿 = prediction error

r(t) 

𝞬 * V̂(t +1) – V̂(t)

V̂(t +1)

V̂(t)

𝛿 (t)

(derivative 
like)

Dopamine 
neurons





Cohen et al. 2012, 
Paper round-up

● They identify 3 types of neurons in the ventral tegmental area.
● They differentiate dopaminergic and GABAergic neurons using optogenetic tools.
● They characterize dopaminergic neurons diversity (excited by either reward, 

reward-predicting CS or both) which seems to be related to the effect of training.
● They show that some dopaminergic neurons might not strictly follow canonical RPE 

coding.
● They show that GABAergic neurons parametrically encoded the value of upcoming 

outcomes.



Motor learning & 
neuromodulation















Neurostimulation devices can alter CNS activity across broad timescales

DBS for Parkinson’s 
disease and essential 
tremor.

SCS for chronic pain.

TMS for depression, 
OCD, and migraines.



Closed-loop stimulation may increase neurostimulation efficacy and 
reduce side effects

Open-loop stimulation Closed-loop stimulation



How can we develop relevant closed loop stimulation paradigms?

Closed-loop paradigms can be 
targeted towards many types of 
triggers:

Environment triggers - tones, or 
task outcomes

Biomechanical triggers - certain 
movements, or tactile sensations

Physiological triggers - neural 
activity, muscle activity, hormones



Vagus nerve function and anatomy

The VN innervates 
most visceral 

organs

Stimulating the VN 
activates the 

parasympathetic 
nervous system



VNS enhances stroke rehabilitation



VNS activates multiple neuromodulatory systems

VNS is a “messy” stimulus:
Serotonergic, 
dopaminergic, 
noradrenergic, and 
cholinergic systems are 
all activated.



The cholinergic neuromodulatory system

Cholinergic 
neuromodulation is 
closely linked with 

learning and 
plasticity



Cholinergic neuromodulation is a strong candidate for mediating VNS 
effects

Cholinergic stim. 
enhances plasticity

Cholinergic activity 
impacts motor 

learning

Cholinergic neurons 
encode cues and 

outcomes



Bowles et al., 2021
Paper round-up

● VNS paired with success enhances skilled motor learning in healthy animals
● Enhanced motor performance is due to accelerated consolidation of an expert motor plan
● Enhanced motor learning depends on cholinergic neural activity in the basal forebrain
● In primary motor cortex, VNS specifically modulates outcome-activated neurons



Visual System 
Neuroscience



Summary

● Center-surround model and it’s ethological relevance (motion)
● Anatomy of the visual pathway, and in particular, cortical layers
● The retina is an evolutionary old structure, and adapted to the niche of the animal
● Zebrafish are a great model systems neuroscience due to their small size and optical 

transparency
● Zebrafish display a wide diversity of visually driven behaviour such as the OMR, prey 

capture and predator avoidance
● The organisation of the zebrafish retina – 4 cones with UV cone being integral for detecting 

prey
● Retinal ganglion cells act as feature detectors, providing parallel processing streams to the 

brain
● The tectum has a highly organised structure and acts as a local motion detector classifying 

prey and predators
● The tectum uses this information to trigger approach and avoidance behavior





What are neurons in V1 encoding?

Spike triggered averageOrientation selectivity (Hubel & Wiesel) 

Niell and Stryker, 2008





















V1 RFs resemble Gabor filters and neural response is 
sparse



Modulation of Visual Responses by Behavioral State 
in Mouse Visual Cortex

Niell & Stryker, 2010



Dunn et al. 2016
Paper round-up

● They provide the first detailed description of a rapid escape behavior elicited by a visual 
stimulus in freely swimming larval zebrafish.

● They suggest that the circuits processing looming stimuli may primarily use stimulus size 
information when determining when and if an escape should be initiated.

● They show that the optic tectum (OT) might serve as a primary nucleus involved in 
looming detection within the larval zebrafish brain, by encoding a critical looming visual 
angle as an ensemble.

● They establish a necessary role of the M-system in the sensorimotor transformation from 
looming stimuli to escape behavior, providing a functional scaffold for the zebrafish to 
quickly evade threats identified with their eyes alone. 



Neural analysis



● Neural encoding and neural decoding are fundamental descriptions of neural (coding) processing and 
data analysis.

● A fundamental goal is: how much information does K have about x
● We mathematically model this as P(K|x), where the neural response of population K to a stimulus (or event) 

x. K is a vector representing the activity of N neurons, and each entry represents, e.g., the number of spikes 
in some time bin or the rate response of that particular neuron.

● Generalized Linear Models (GLMs) are very attractive for both individual neurons and populations, yet 
assume linear 𝛳 dynamics (careful: despite having a nonlinear parameter).

● Modern hardware advances continue to push the upper limit on the # of neurons we can record, and therefore we 
need new mathematical tools for understanding neural coding.

● Manifold of behavioral and neural data hypothesis comes into play…
● Two large classes of approaching modeling a system: data-driven or hypothesis (task)--driven
● Modern methods for mapping the statistical properties of neurons to a stimulus/behavior are fully-observable models 

and latent variable models.
● Latent variable models infer hidden (i.e., latent) variables that capture the underlying structure of the observed data 

through a joint probability distribution.
● VAEs and contrastive learning approach to neural analysis; contrastive learning (CEBRA) has highly attractive 

properties like combining across datasets and producing consistent latent embeddings.

Summary













How can we (consistently) extract the behaviorally-relevant 
latent dimensions from neural population activity?









Behavioral 
analysis









Encoding of 
space in the brain





Ratemaps

RatemapSpikes

Time
spent

More bins
Different colormap



Autocorrelogram

Correlate ratemap to a 
shifted version of itself 
and then visualize the 
correlation coefficient



The cognitive map

Border cells    Head-direction cells      Grid cells Place cells

Medial entorhinal cortex Hippocampus

Mosers, O’Keefe, Knierim 2008

Mosers 2005

O’Keefe 1971

Ranck, Taube 1980s









Head direction cells 
are mostly driven 
by vestibular input 
and visual 
landmarks



Grid cells in medial entorhinal cortex

Strange et al. 2014

Entorhinal cortex (EC) is a major form of input to the 
hippocampal formation and is further split into medial (MEC) 
and lateral (LEC) entorhinal cortex

Animal trajectory is visualized in grey and the 
spikes are overlayed in red

   Ratemap    Autocorrelogram









Hafting et al. 2005
Fiete et al. 2008
Bush et al. 2015
Stemmler et al. 2015
Behrens et al. 2018

SummaryPeriodic firing

Grid cell 
parameters

Tiling of space

Vector computation

Phase precession

Encoding of abstract spaces!

Ventral

Dorsal





Hafting et al. 2005
Paper round-up

● They propose that the dMEC is part of a neural map of the spatial environment.

● They find a novel cell type in the dMEC that would be the basic unit of the map: 
the grid cell, which shows periodic firing as a response to non-periodic behavior.

● They show that the grid spacing, orientation and field size are topographically 
arranged from dorsal to ventral entorhinal cortex.

● They show that the grid phase vary randomly among co-localized cells, so that 
the full surface of the environment is represented within a local cell ensemble, 
suggesting a modular local organization of the spacial map. 

● They suggest that grid cells are aligned to external landmarks but also persist in 
darkness (further work challenged that last point!).

● They find that the grid structure in the dMEC is expressed instantly in a novel 
environment, suggesting that the periodic structure is encoded by default, and 
the phase and orientation are set in relation to context-specific landmarks.



NeuroAI





Summary
● NeuroAI is an emerging discipline that crosses across systems neuroscience and computer science
● It’s goal is broadly to use neuro insights to build AI, and to develop AI for understanding the brain 

(neuro)
● It is needed as it is still VERY hard to develop embodied AI, human-like movement into robotics, and 

we still lack generally intelligent systems (although LLMs for language are impressive … )
● Key example in Neuroscience inspiring AI: convolutional neural networks (likely transformers too 

“attention”): this is a hot area in industry – using cognitive neuro approaches to study NN btw!
● Interestingly, CNNs developed representations similar to the brain
● Key examples of AI influencing neuro: better behavioral analysis tools, better neural analysis tools (see 

also BCI week soon!)
● What is missing? NNs are very simple “neurons,” that lack the complexity of what we find in the real 

brain: an opportunity awaits!
● Data-driven and task-driven modeling: key approaches in neuroAI
● How do we model sensory systems: examples in vision and proprioception
● What to consider: both how close they are at single cell, task performance, and population level 

similarity
● Ongoing efforts: Brain-Score, Inception Loops …











What other tasks? What other stimuli is the brain (visual) 
encoding?



Brain Machine 
Interface for 

systems 
neuroscience



Summary
Overview:
•BCIs, or Brain Computer Interfaces, are systems that facilitate a direct communication pathway between a brain and an external 
device. This technology enables individuals to control devices using only their brain signals.
•Recording neural activity is the foundation of how BCIs operate. Specialized algorithms, known as decoders, are then employed to 
interpret these signals into commands that can control devices or computer systems.
•The importance of (encoder-) decoder algorithms lies in their ability to translate neural activity into actionable instructions for external 
devices, making them integral to the functionality of BCIs.
Systems Neuroscience Contributions:
•Instrumental in identifying optimal brain areas for signal recording, understanding neural subtypes, and designing effective sensory 
feedback within BCIs.
•Insights into neural dynamics, such as the relationship between neural firing and sensory stimuli or motor actions, thereby informing the 
development of more advanced BCIs.
•Current research in systems neuroscience contributes to BCIs by examining the principles of encoding sensory information into neural 
activity and decoding it back into the brain.

Current Technologies in BCIs:
•Microelectrode arrays are a key technology in BCIs, allowing for the stable recording of neural activity over extended periods. These 
arrays can be implanted and have been used in both research settings and, to a lesser extent, in clinical applications to assist individuals 
with paralysis.
•Two-photon holographic optogenetics represents a cutting-edge approach in BCI technology. It enables precise manipulation and 
recording of neural activity using light (calcium imaging and optogenetics).
•Technological advancements in BCI include increased recording stability and longevity, more biocompatible materials for implants, and 
higher throughput in signal recording. These improvements are crucial for the reliability and user-friendliness of BCIs, ultimately 
enhancing their applicability and integration into various aspects of life and healthcare. Ethics are also deeply important to consider.















Athalye et al. 2023, 
Paper round-up

● Monkeys were trained to control a cursor in several tasks using a BMI 
based on neural activity recorded in motor cortex.

● Invariant dynamics in the recorded neurons could predict the neural 
activity that was used to produce a motor command, even when task 
inputs were removed from the model.

● Invariant dynamics alter neural activity in dimensions relevant to the 
decoder, demonstrating a causal link between invariant dynamics and 
motor commands (at least in this BMI setting).

● Adding an optimal feedback controller to an in silica model of invariant 
dynamics trained to perform the center out tasks reduced the amount of 
inputs needed for successful execution.



Cognition & 
skill learning



Summary

● Muscle synergies have been proposed as a key principle for motor control 
● Yet, low-dimensional nature might be underestimated with existing techniques! 
● For the hand -- learned muscle synergies are highly task-specific, and thus generalize poorly 
● This suggests that low-dimensional control is an emergent property (of the task/biomechanics/distributed 

circuits) rather than the mechanism of control (not a simplifying strategy) 
●  Neural networks are ideal for taming complex biomechanics
● Training neural network with a curriculum based learning leads to better performance
● Muscle synergies from artificial agents resemble closely the ones from humans









Chiappa et al 2024 , 
Paper round-up

● They succeeded in training a musculoskeletal 
model on an object-manipulation task.

● They propose a static to dynamic stabilization 
(SDS) curriculum, inspired by coaching practice.

● They show that, akin to experimental data, SDS 
learns low-dimensional kinematic and kinetic 
spaces.

● They show that muscle synergies are highly task 
specific and thus generalize poorly.

● They found that more dimensions contributed to the 
task performance than suggested by traditional 
synergy analysis.

● They found lower tangling of the dynamics in the 
controller state space than in the action state 
space, consistent with previous observations that 
motor cortical dynamics avoiding tangling more 
than muscle dynamics.


